i want train svm perform classification of samples. have csv file me has 3 columns headers: feature 1,feature 2, class label , 20 rows(= number of samples).
now quote scikit-learn documentation " other classifiers, svc, nusvc , linearsvc take input 2 arrays: array x of size [n_samples, n_features] holding training samples, , array y of class labels (strings or integers), size [n_samples]:"
i understand need obtain 2 arrays(one 2d & 1 1d array) in order feed data svm. unable understand how obtain required array csv file. have tried following code
import numpy np data = np.loadtxt('test.csv', delimiter=',') print data
however showing error "valueerror: not convert string float: ��ࡱ�"
there no column headers in csv. making mistake in calling function np.loadtxt or should else used?
update: here's how .csv file looks like.
12 122 34 12234 54 23 23 34 23
you passed param delimiter=','
csv not comma separated.
so following works:
in [378]: data = np.loadtxt(path_to_data) data out[378]: array([[ 1.20000000e+01, 1.22000000e+02, 3.40000000e+01], [ 1.22340000e+04, 5.40000000e+01, 2.30000000e+01], [ 2.30000000e+01, 3.40000000e+01, 2.30000000e+01]])
the docs show default delimiter none
, treats whitespace delimiter:
delimiter : str, optional string used separate values. default, whitespace.
Comments
Post a Comment